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The formation and development of transverse and crescentic sand bars in the coastal
marine environment has been investigated by means of a nonlinear numerical model
based on the shallow-water equations and on a simplified sediment transport para-
meterization. By assuming normally approaching waves and a saturated surf zone,
rhythmic patterns develop from a planar slope where random perturbations of
small amplitude have been superimposed. Two types of bedforms appear: one is a
crescentic bar pattern centred around the breakpoint and the other, herein modelled
for the first time, is a transverse bar pattern. The feedback mechanism related to the
formation and development of the patterns can be explained by coupling the water
and sediment conservation equations. Basically, the waves stir up the sediment and
keep it in suspension with a certain cross-shore distribution of depth-averaged concen-
tration. Then, a current flowing with (against) the gradient of sediment concentration
produces erosion (deposition). It is shown that inside the surf zone, these currents
may occur due to the wave refraction and to the redistribution of wave breaking
produced by the growing bedforms. Numerical simulations have been performed in
order to understand the sensitivity of the pattern formation to the parameterization
and to relate the hydro-morphodynamic input conditions to which of the patterns
develops. It is suggested that crescentic bar growth would be favoured by high-energy
conditions and fine sediment while transverse bars would grow for milder waves and
coarser sediment. In intermediate conditions mixed patterns may occur.

1. Introduction
Physical processes characterizing the nearshore region are still not clearly under-

stood. As a consequence, the morphological changes leading to the observed variety of
shapes and features appearing at different time and space scales is nearly impossible
to predict. Sometimes the sea bed in the nearshore region is characterized by rhyth-
mic longshore patterns of impressive regularity. Such patterns are usually detected
only in restricted portions of the nearshore region. The most familiar example for
the observer is probably given by beach cusps whose appearance is limited to the
swash region (Russell & Mcintire 1965) and whose presence distinctly characterizes
the shape of the coastline. Rhythmic features also appear and extend through the
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surf zone, the most common example being the presence of megacusps (Short 1999)
and transverse bars (Niederoda & Tanner 1970; Konicki & Holman 2000). Rhythmic
patterns, usually called by the term ‘crescentic bars’, can also appear and be limited
to the region around which waves break (Lippmann & Holman 1990). In some cases
even a mixed topography with the concurrent presence of different types of these
features has been reported (Davis & Fox 1972; Goldsmith, Bowman & Kiley 1982;
Short 1999).

The formation of these rhythmic patterns has usually been related to the presence
of regular structures in the hydrodynamics. Coupling between incoming waves and
standing edge waves provides an alongshore structure affecting the sea bed morphol-
ogy and resulting in the pattern formation. Such a mechanism has been proposed in
order to explain the formation of beach cusps (Inman & Guza 1982), and crescentic
and oblique bars (Bowen & Inman 1971; Holman & Bowen 1982). This approach,
although successful in the prediction of the shapes and even initial alongshore spacing
of the features, has failed more rigorous field testing (Holland & Holman 1996; Mas-
selink & Pattiaratchi 1998) and, more generally, the hypothesis that sediment is just a
reflection of the hydrodynamics without any feedback between flow and morphology
seems inappropriate.

In fact, some recently developed models based on cellular automata (Coco, Huntley
& O’Hare 2000; Werner & Fink 1993) show that the dynamical behaviour related
to the formation and development of rhythmic patterns in the nearshore region
is essentially the result of non-linear interactions between flow and morphology.
Another approach commonly adopted to study the initial growth of a pattern is
linear stability analysis which has already been successfully applied to describe the
formation of various features at different scales ranging from ripples (Blondeaux
1990) to offshore patterns like sand waves (Hulscher, De Swart & De Vriend 1993)
and shoreface-connected ridges (Calvete et al. 2001).

Linear stability analysis has also been considered for the formation of patterns
characterized by length scales comparable to that of the nearshore region (Christensen,
Deigaard & Fredsoe 1995; Deigaard et al. 1999; Falqués, Montoto & Iranzo 1996;
Hino 1975; Vittori, De Swart & Blondeaux 1999). In particular, Falqués, Coco &
Huntley (2000) have examined the coupling between sea bed disturbances and wave-
driven water motion in the surf zone. Their analysis clearly indicated that sea bed
disturbances can cause excess gradients in the radiation stresses leading to the growth
of patterns around the breaking area resembling crescentic bars. Their investigation
was carried out considering a monochromatic normally incident wave field and
included the effect of a moving breaker line on the growth of the features. However,
the refraction of the waves over the developing topography was not included and,
of course, the linearity of the stability analysis allowed only for the small-amplitude
behaviour of the features.

The study described here extends this work in two respects: (i) the assumption of
linearity is relaxed and (ii) wave refraction is accounted for. To this end, a nonlinear
model based on the shallow water equations capable of simulating the formation
and finite-amplitude development of rhythmic patterns is presented, and the resulting
features are shown and interpreted.

The next section is dedicated to the theoretical foundation and to the parame-
terizations of the model used for the simulation of rhythmic pattern formation and
development, while in § 3 an outline of the numerical algorithm is given. Section 4
shows results obtained from numerical simulations including a sensitivity analysis of
the significant parameters involved in the process and qualitative comparisons with
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field observations. Section 5 is devoted to the interpretation of the physical mechanism
for the growth of the features. Findings and limitations are discussed in §§ 6 and 7.

2. Formulation
2.1. Averaged governing equations

We consider a rectilinear coast with a shoreline given by the y-axis and with a
topography described by the level of the sea bed, z = zb(x, y, t), where x is the cross-
shore coordinate, positive in the offshore direction, and z is the vertical coordinate,
positive upward (z = 0 corresponds to the mean water level). The morphological
evolution is described by the sediment conservation equation

∂zb

∂t
+ qj,j = 0, (2.1)

where q is the horizontal sediment flux vector (volume of sand per horizontal length
unit and time unit). The horizontal coordinates will be hereinafter represented by
x1 = x, x2 = y, and repeated indexes are assumed to be summed. The derivative
with respect to xj is indicated by the subindex j. The rate of change of sediment
concentration above the bed has been neglected in (2.1) by assuming that the time
scale of the changes in sediment concentration are much larger than the hydrodynamic
time scale (see Appendix A). The correction due to sand porosity (factor ∼ 0.5 in
front of ∂zb/∂t) is omitted for simplicity and it is assumed to be included in the
parameterization of the sediment flux.

The sediment flux is obviously related to water motion so that morphodynamic
evolution requires knowledge of the hydrodynamics. The parameterization that will
be used for sediment transport is based on the net mean current, depth and wave
averaged, v = (v1, v2), so that the hydrodynamic equations will be the depth and
wave-averaged momentum and mass conservation (Mei 1989)

∂vi

∂t
+ vjvi,j = −gzs,i − 1

ρD
(τi + Sij,j) +

1

D
[νD(vi,j + vj,i)],j , i = 1, 2, (2.2)

and
∂D

∂t
+ (Dvj),j = 0. (2.3)

In these equations D = zs − zb is the total depth and zs(x, y, t) stands for the free-
surface elevation. The bottom shear stress is τ , and the water density is ρ. The
fast water motions related to the turbulence and to the wind and swell waves are
not explicitly described in the model. Their effects are parameterized through the
Reynolds stresses (last right-hand-side term in (2.2)) with the turbulent momentum
mixing coefficient ν (eddy viscosity) and the wave radiation stresses Sij .

In principle, the shallow-water approximation is appropriate as long as interest
is focused on morphological evolution at horizontal length scales of the order of
the surf zone width, i.e. O(102 m), in water depths of O(1 m). The wave averaging
is also sensible because the aim is the slow morphological evolution (time scales of
hours) coupled to the net currents. Nevertheless, the vertical structure of the flow
in combination with a non-uniform suspended sediment distribution in the water
column can give an important contribution on the sediment flux. Also, because of
the nonlinearity of the sediment transport, there can be a net transport due to the
wave oscillatory motion even in the absence of a net current. The possibility of either
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disregarding these effects or their parameterization into the shallow water model will
be discussed in § 2.2 and in Appendix B.

After introducing the pertinent parameterizations, equations (2.1), (2.2) and (2.3)
constitute a system of four nonlinear partial differential equations for the four
unknowns zb(x, y, t), v(x, y, t) and zs(x, y, t).

2.2. Parameterizations

2.2.1. Incident waves

The aim of this paper is to show that the mean water motions, driven by the wind
or swell waves incoming from deep water and coupled to the topographic evolution,
can generate morphological patterns like crescentic and transverse bars. The wave
forcing on the mean hydrodynamics is given by the radiation stress

Sij = E

[(
cg

c
− 1

2

)
δij +

cg

c

ki

k

kj

k

]
, i = 1, 2, (2.4)

where k and E are the wavenumber and the energy density of the waves, respectively,
and c, cg are their phase and group celerities (Horikawa 1988). All these quantities are
assumed to be known in deep water. However, as the waves approach the coast they
refract, the energy density slightly increases (shoaling) and then decreases drastically
due to breaking in the surf zone. The phase and group celerities change because
of the reduction in water depth and the modification of the wavenumber. Wave
transformation will be described here in a simplified way that includes only the
essential physical processes. The drastic reduction in wave energy as waves break,
coupled to the topographic irregularities, has proven to be a possible cause of the
initial formation of crescentic bars (Falqués et al. 2000). On the other hand, early
studies by Niederoda & Tanner (1970) and many field observations (see for instance
Falqués 1989) suggest that wave refraction can be very important for transverse bar
formation. Thus, we will try to incorporate these two effects into the model and to
leave out unnecessary complications. To this end, regular waves will be assumed,
i.e. all the individual waves have the same amplitude and wavenumber at a given
location. Moreover, infragravity wave motions are disregarded in this study.

The wave energy density distribution

E = 1
8
ρgH2 (2.5)

is provided by the wave height H at each location. Wave height will be assumed to
be proportional to the water depth

H = γbD (2.6)

in the surf zone (saturated surf zone hypothesis) and constant out of the surf zone.
As discussed in § 6, this last assumption is based on the fact that the increase
in wave amplitude because of the shoaling is smaller than the reduction due to
breaking in the surf zone. The same wave amplitude distribution was considered in
Falqués et al. (2000). However, its implementation in the present nonlinear model is
not straightforward. First, the position of the breaking line, x = Xb(y, t), has to be
determined. Given the deep-water wave height, H∞, this is done by seeking the first
location where γbD(x, y, t) = H∞ along each wave ray. Second, once waves start to
break because of the depth reduction their amplitude decreases according to (2.6).
If the depth reduction following the wave path is reversed (i.e. due to the presence
of a bar) equation (2.6) predicts an onshore wave amplitude increase which is not
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observed in nature. Therefore, the model does not allow the amplitude to grow in this
case and instead, it takes a constant wave height along the ray, H1, up to the position
where the condition H1 = γbD(x, y, t) is met.

From the frequency of the incident waves, σ, the dispersion relation allows the
computation of the magnitude of the wavenumber:

σ2 = gk tanh(kD). (2.7)

The standard expressions from linear wave theory (Mei 1989; Horikawa 1988) provide
the phase and group celerities.

Since infragravity oscillations are not considered in this study, the wave field has
been assumed to be quasi-steady, i.e. changing only at the slow time scale of the
topographic changes. Thus, the equation for a ray, y = y(x),

d

dx

[
ky′√

1 + y′2

]
=
√

1 + y′2
∂k

∂y
, (2.8)

can be derived by using the geometric optics approximation (Mei 1989, p. 65). If
we consider a given location (x0, y0) and a new Cartesian coordinate system with
its origin at (x0, y0), and with axes x∗ and y∗ parallel and perpendicular respectively
to ∇D, then y∗ is parallel to the local depth contour and ∂k/∂y∗ = 0. This allows
equation (2.8) to be rewritten as the Snell law

d

dx∗
(k sinϕ∗) = 0, (2.9)

where ϕ∗ is the angle between the wave ray and the x∗-axis, that is, the normal to the
perturbed depth contours.

2.2.2. Sediment transport

The net (wave-averaged) sediment transport in the surf zone is jointly driven by
currents and by waves, the latter contributing because, as it is a nonlinear process,
there is also a net effect from the wave oscillatory motion. Transport takes place
both in suspension (suspended load) and in contact with the bed (bed load) and
it is a complicated process which is still poorly understood and hard to predict
accurately. However, it is usually accepted (see Horikawa 1988, for instance) that the
processes associated with cross-shore transport and longshore transport are different.
The longshore transport is dominated by the effect of the longshore current which
typically has a simple vertical profile characteristic of a steady unidirectional flow.
On the other hand, any attempt to understand and predict the cross-shore transport
needs to deal necessarily with a more complicated vertical structure of the flow and
with the complexity of the wave oscillatory motion (Battjes 1988; van Rijn 1993).

However, the cross-shore sediment transport vanishes for the alongshore uniform
and steady equilibrium. In this situation, for normal wave incidence there is no net flux
of water, v = 0, the onshore wave transport being compensated by the wave-induced
baroclinic current (e.g. undertow). Also the net sediment transport vanishes, q = 0, as
a result of a balance between the onshore-wave-driven sediment transport (by wave
asymmetry, for instance) and the offshore transport due to gravity and undertow.
If alongshore gradients in the topography develop, alongshore gradients in wave
radiation stresses and, thereby, gradients in set-up arise. In this way, a horizontal
circulation (with possibly rip currents) with a non-vanishing depth-averaged flow,
v 6= 0, is generated. This type of circulation is commonly observed in the field where
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crescentic bars or transverse bars are present, and it is known to carry a significant
amount of sediment, typically larger than unperturbed (longshore uniform) cross-
shore transport (Short 1999). The key assumption that has been tested in the present
study is that, even if other effects can have some influence, the main mechanism
responsible for the formation of the bars is the coupling between the morphology and
the circulation via the sediment transport driven only by the depth-averaged current.
Therefore, we assume that the departure of sediment transport from equilibrium
depends on the departure on depth-averaged current. Keeping this in mind a sediment
transport parameterization given by

q = α(u0)v − γ(u0)∇h (2.10)

is assumed, where h(x, y, t) = zb(x, y, t) − z0
b(x) is the topographic perturbation with

respect to equilibrium and u0 is the wave orbital velocity at the bed. The linearity of
the dependence with respect to the current is realistic when the current is small with
respect to the wave orbital velocity, |v| � u0. However, as argued when analysing the
physical mechanism underlying the growth of the bars (§ 5), that assumption is not
essential. More details on the choice of this parameterization and, in particular, the
reason for the term in ∇h, are given in Appendix B.

The structure of the α and γ functions is taken from Falqués et al. (2000) since
one of the main interests of the present paper is to extend the linear stability
analysis presented there. The particular choices can be supported by at least two
different approaches. First, the Bailard (1981) energetic formulation for suspended
load transport and weak current, |v| � u0, has this form with

α(u0) = C1u
3
0, γ(u0) = C1εs

u5
0

w
, (2.11)

where C1 = εscd/(gw), w represents the sediment fall velocity and εs is a non-
dimensional constant of order 10−2. A similar expression holds for bedload with α
and γ proportional to u2

0 and u3
0, respectively. Alternatively, αv can be seen as the

transport in suspension in the case of a vertically uniform sediment concentration,
α/D (a well-mixed water column because of turbulence, see, for instance Peters &
Dette 1999). The coefficient γ can then be introduced as an heuristic way of taking
into account morphological diffusion. Clearly, the second right-hand-side term in
(2.10) leads to a diffusive term when the expression for q is introduced in the
morphodynamic equation (2.1). Independently of the formulation, (2.10) means that
the sediment is stirred by the waves and advected by the current. Thus, the α function
will be referred to as the wave stirring function.

In the alongshore uniform equilibrium, the orbital velocity is a known function
of the cross-shore coordinate, u0 = u0(x). Out of equilibrium, the perturbed orbital
velocity depends also on the alongshore coordinate in response to the alongshore
gradients in wave energy. For the linear stability analysis presented in Falqués et al.
(2000) the perturbation in u0 produced a second-order correction in α(u0)v since v
was first order. Therefore, this perturbation was neglected and the wave stirring was
assumed to be a fixed known function of the cross-shore coordinate, α(x). Several
choices for this function were tested and the conclusion was that the growth of
morphological instabilities required only that α(x) increased faster than D(x) through
the surf zone and was constant or decaying outside the surf zone. From a physical
point of view it is likely to be true for suspended load since either (i) α is proportional
to a power three of the wave orbital velocity which is proportional in turn to the
water depth to power 1/2 or (ii) α/D is the sediment concentration which should
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increase seaward as the wave-induced bed shear stress increases. This is consistent
with field observations by Antsyferov & Kos’yan (1990, figure 12) or by Peters &
Dette (1999, figures 8 and 9) where it is shown how the concentrations of suspended
sediment tend to increase seaward across the surf zone and then diminish offshore of
the breaking zone. As shown in Falqués et al. (2000), such a distribution of suspended
sediment can only be expected if infragravity contributions are limited, otherwise the
stirring function should be approximately constant across the surf zone.

For simplicity, the same unperturbed structure of the α function has been used for
the finite-amplitude simulation. As will be seen through the analysis of the instability
mechanism in § 5, the possible alongshore gradients in α(x, y) are not essential for the
mechanism itself. Additional tests allowing for such gradients have been run. In such
tests, the structure of the α function depended on the local water depth (and so on
the bed perturbation) rather than the cross-shore position. Nevertheless, simulations
still resulted in the growth of rhythmic patterns characterized by the same finite
amplitude, configuration and growth rate as the runs with the simplified structure of
the α function.

Since the essential condition for the growth of bedform is that α(x)/D(x) is an
increasing function in the surf zone and since D(x) is linear, α(x) was chosen to be
quadratic up to the breaking point and smoothly decaying beyond. The magnitude of
α will be represented by its maximum, αm = {α(x)}max. Similarly, the morphological
diffusion γ(x) has been assumed to increase up to the breaking line and decrease
beyond. Its maximum value, γm = {γ(x)}max, is another important parameter of the
model. Simulations have been run changing the free parameters shaping α(x) and γ(x)
but the results do not change significantly (in agreement with the results of the linear
stability analysis by Falqués et al. 2000).

2.2.3. Turbulent momentum diffusion

Wave breaking dissipates wave energy into turbulent water motions. It is commonly
accepted that these turbulent motions include small-scale horizontal eddies that
produce a horizontal momentum diffusion represented by the Reynolds stresses in
(2.2) which are proportional to the eddy viscosity coefficient ν that depends in turn
on the wave energy dissipation rate. A very simple formulation based on Longuet-
Higgins (1970) will be used here. Accordingly, the kinematic eddy viscosity will be
taken as

ν = Nx
√
gD, (2.12)

where N is a non-dimensional parameter. However, since the maximum turbulence
occurs close to the breaking line and beyond the breaking line a decrease of the
turbulence is expected, an exponential decay is assumed seaward of the breaking
line (with results being unaffected by the specific rate of decay). This formulation is
mathematically consistent with Battjes (1975) for a wave energy dissipation rate of
D = ρ(gD)3/2.

2.2.4. Bed shear stress

The instantaneous bed shear stress is proportional to the square of the total
flow velocity at the bottom boundary layer with a certain drag coefficient. If a
proportionality is assumed between the bed flow velocity and the depth-averaged
velocity, there is a similar dependence between the shear stress and the depth-
averaged velocity but with a corrected drag coefficient, cd. The momentum equations
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(2.2) are wave averaged and therefore the averaged-bed shear stress

τ = −ρcd〈|v + v′| (v + v′)〉, (2.13)

is needed, where 〈·〉 means time average over the wave period and v′ is the wave
velocity component, with amplitude u0. Since the interest in this paper is on normal
wave incidence, the currents will not be very strong and the weak current limit,
|v| � u0, will be assumed. Thus, the averaged bottom shear stress (2.13) will be
approximated by

τx = −2

π
ρcdu0 [vx(1 + cos2 ϕ) + vy sinϕ cosϕ], (2.14)

τy = −2

π
ρcdu0 [vx sinϕ cosϕ+ vy (1 + sin2 ϕ)], (2.15)

where ϕ is the wave incidence angle with respect to the −x-direction, i.e. kx = −k cosϕ,
ky = k sinϕ (Horikawa 1988, p. 120). Note that ϕ = 0 in deep water but ϕ 6= 0 in the
surf zone as the waves are refracted by the emerging bars.

3. Nonlinear numerical model
The governing equations (2.1), (2.2) and (2.3) have been solved numerically to give

the time evolution of the topography and the mean hydrodynamics under the forcing
of incident waves from any permutation of random perturbations to a planar beach.
As shown in the following sections, the numerical model (called morfo50 ) describes
the formation and further evolution of crescentic and transverse bars from small
initial topographic irregularities.

3.1. Geometry and boundary conditions

A rectilinear coastline given by the y-axis is assumed with an alongshore uniform
reference beach profile which consists of a small vertical wall at the shoreline, then
a linear slope, a transition topography defined by a second-order polynomial and,
finally, a horizontal bottom:

z0
b(x) =


z0 + βx, 0 6 x 6 x1

z∞ − β

2

(x− x2)
2

x2 − x1

, x1 6 x 6 x2

z∞, x2 6 x.

(3.1)

This beach profile will be assumed to be in equilibrium, in the sense that the
wave-driven sediment transport is balanced by the downslope gravitational transport
according to (B 5). Even though this simplified profile does not correspond exactly with
any of the equilibrium profiles found in field observations or used in modelling (Dean
1991; Plant, Ruessink & Wijnberg 2000), it shares with them the main qualitative
characteristic which is its concavity. In view of the fact that the investigation of
equilibrium beach profiles is still under way (Plant et al. 2000) and that we are
interested in alongshore non-uniform features, this seems a reasonable choice. The
vertical wall at the shoreline is introduced in order to avoid the complications of a
moving shoreline and the dynamics of the swash zone that are expected to have little
effect on the surf zone bars.

To investigate the formation and dynamics of nearshore patterns we will consider a
rectangular horizontal domain bounded by the shoreline, x = 0, an offshore boundary,
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x = Lx, and two cross-shore straight lines, y = 0, y = Ly . The offshore boundary will
be chosen in order that the surf zone fits well into the domain, i.e. at least at a
distance of twice the width of the surf zone. Since we are interested in bar systems
which are rhythmic along the coast, periodic boundary conditions will be assumed at
the lateral sides of the domain:

zb(x, 0, t) = zb(x, Ly, t), zs(x, 0, t) = zs(x, Ly, t), v(x, 0, t) = v(x, Ly, t). (3.2)

Of course, the results of the model have to be carefully checked for sensitivity to the
length of the domain Ly . To be consistent with our crude representation of the swash
zone, no sediment will be allowed to move onshore or offshore at the shoreline:

qx(0, y, t) = 0, (3.3)

and, in addition, the non-slip condition of viscous flows

v(0, y, t) = 0 (3.4)

will be assumed. In the reference state without bars there is no circulation since
the wave angle of incidence is perpendicular to the coast. When the bars develop, a
circulation coupled to them also develops. Since the topographic patterns are located
in the nearshore region, flow patterns will be expected to develop in such an area
as well with the flow velocities vanishing far offshore. Consequently, the following
boundary conditions will be considered:

κx
∂vx

∂x
+ vx = 0, κy

∂vy

∂x
+ vy = 0, x = Lx, (3.5)

with the constant coefficients κx, κy > 0 forcing an exponential seaward decay across
the offshore boundary.

3.2. Spatial discretization

Spatial discretization has been achieved by using finite differences with a grid spacing

∆x =
Lx

Nx − 1
, ∆y =

Ly

Ny

.

A staggered grid scheme has been used where the scalar variables such as the free
surface and the bottom levels, zs, zb, the wave height H , the incident wave angle ϕ,
etc. are defined at the centre of each cell, which will be referred as the η-node:

xi = (i− 1
2
)∆x, i = 1, . . . , Nx, yj = (j − 1

2
)∆y, j = 0, . . . , Ny + 1.

The vector variables such as the velocity v and the sediment flux q are defined at the
boundaries of each cell. Thus, the cross-shore components are defined at the so-called
u-nodes:

xi = (i− 1)∆x, i = 1, . . . , Nx, yj = (j − 1
2
)∆y, j = 0, . . . , Ny + 1,

and the longshore components at the v-nodes:

xi = (i− 1
2
)∆x, i = 1, . . . , Nx, yj = (j − 1)∆y, j = 0, . . . , Ny + 1.

The derivatives are evaluated by central second-order-difference approximations. An
example is given in § 3.4.
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3.3. Wave refraction in finite difference form

In order to evaluate the wave radiation stress, the incidence angle ϕ with respect to
the −x-direction must be determined. The discretized stepwise bottom leads, through
the dispersion relation (2.7), to a discrete set of values for the magnitude of the
wavenumber, ki,j , over the whole domain. Therefore, a ray crossing from one cell to
the next will feel a jump in the wavenumber and, according to the local Snell law
(2.9), a jump in the local incidence angle ϕ∗ given by

ki,j sinϕ∗i,j = ki−1,j sinϕ∗i−1,j (3.6)

will occur. The incidence angle with respect to the cross-shore direction is given by
ϕi,j = ϕ∗i,j +θu i,j where θu i,j is the angle between the normal to the local depth contour,
(∇D)u i,j , and the x-axis, evaluated at the u-node i, j.

The present formulation has two limitations. First, the Snell law is applied by
progressing along each cross-shore line (decreasing i, fixed j) instead of keeping track
of the wave rays (a similar procedure is also used to control the wave amplitude
decrease in the shoreward direction). This is appropriate as long as the incidence
angle ϕ is not too big. Furthermore, whenever waves propagate from deep to shallow
water, the wavenumber increases along the ray path, ki−1,j > ki,j , and (3.6) allows the
computation of ϕ∗i−1,j from ϕ∗i,j . However, in the presence of shoals and pools, waves
can propagate from shallow to deep water with the result that

ki,j

ki−1,j

sinϕ∗i,j > 1 (3.7)

may occur and ϕ∗i−1,j is no longer defined. In physical terms this means that wave
reflection occurs and has the consequence that, for incidence angles above a critical
angle, the simple wave refraction formulation is not allowed. This happens for
bedforms of large amplitude and, as will be seen, it poses the most severe limitation
on the model simulations. However, the critical bar amplitudes are relatively high so
that the model is capable of describing the formation and further evolution of sand
bars up to amplitudes (from trough to crest) of a few decimetres.

3.4. Time stepping

The variables are defined at the time mesh

tn = n∆t, n = 0, . . . , Nt,

and the temporal integration is by a second-order Adams–Bashforth scheme that
approximates ds/dt = φ(s, t) by

sn − sn−1

∆t
= 3

2
φn−1 − 1

2
φn−2, (3.8)

where sn = s(tn). The initial time step from n = 0 to n = 1 is performed by an explicit
Euler scheme.

The combination of the spatial and the temporal discretization yields the difference
form of the governing equations (2.1), (2.2), (2.3), from where zb, zs, v can be computed
at t = n∆t from their values at t = (n− 1)∆t and t = (n− 2)∆t. For instance, the mass
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conservation equation (2.3) becomes

Dn
i,j − Dn−1

i,j

∆t
= −3

2

1

∆x
(Dn−1

u i+1,ju
n−1
i+1,j − Dn−1

u i,j u
n−1
i,j )

−3

2

1

∆y
(Dn−1

v i,j+1v
n−1
i,j+1 − Dn−1

v i,j v
n−1
i,j )

+
1

2

1

∆x
(Dn−2

u i+1,ju
n−2
i+1,j − Dn−2

u i,j u
n−2
i,j )

+
1

2

1

∆y
(Dn−2

v i,j+1v
n−2
i,j+1 − Dn−2

v i,j v
n−2
i,j ),

where D = zs − zb and Du i,j = (Di,j + Di−1,j)/2 and Dv i,j = (Di,j + Di,j−1)/2 are the
interpolated values of D at the u- and v-nodes, respectively. Similar cumbersome
expressions hold for the rest of the governing equations.

Since the temporal integration is achieved by an explicit scheme, two generic
stability conditions are expected:

∆t 6 c1

min{∆x2,∆y2}
νmax

, ∆t 6 c2

min{∆x,∆y}
cmax

, (3.9)

the first one related to the parabolic nature of the system, the second one to its
hyperbolic character. Given the values of the grid spacing, the momentum diffusivity
and the shallow-water wave celerity, c =

√
gD, the latter inequality has proven to be

the most restrictive in the numerical experiments, with a constant c2 ' 0.1.

4. Model results
4.1. Model sensitivity

The numerical code presented in the previous section has been used to simulate
the development of the sea bed in the nearshore region and the resulting formation
of rhythmic patterns. Initial tests have been entirely devoted to the analysis of the
model sensitivity and stability in relation to numerical parameters like the number
of discretization points for a given domain. It has been found that the formation of
the morphological patterns is not the result of a numerical instability, and changes,
reduction or increase, in the number of discretization points only affects the definition
of the features. Simulations described in this paper are all derived using at least a
node every 1.5 m with results not being sensitive to doubling or halving this value.
The previously described geometry of the beach profile involves the use of a small
vertical wall at the shoreline (§ 3.1) whose height has been kept equal to 0.2 m for
all the simulations presented in this paper. Because of the use of periodic boundary
conditions, an important aspect to be carefully addressed concerns the width of the
domain in the alongshore direction. The use of small domains could potentially cause
two sources of error: a fast growth of what is only a spurious instability or the for-
mation of patterns whose spacing does not lead to an equilibrium configuration. The
first source of error has been categorically dismissed by comparing simulations with
different widths of the domain and, in all the cases analysed, morphological patterns
developed with the same flow pattern. The second source of error required particular
care and domains were chosen in such a way that at least two wavelengths could fully
develop. For the offshore boundary condition, values of κx = κy = 30 m were chosen
in order to force a seaward decay towards zero (the rate of decay is e−1 in a distance
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Figure 1. Formation and development of a transverse bar pattern. (a) Initial bed level perturbation,
(b) bed perturbation after 1 h, and (c) final configuration reached after 5 h. Shoals and troughs are
represented by light and dark colours respectively. Arrows represent the velocity field (maximum
velocity in (b) = 0.10 m s−1, maximum velocity in (c) = 0.67 m s−1). The coastline is at the bottom
of each plot.

of 30 m). We did not detect any significant change in the results by changing those
values. In order to test the sensitivity of the model, simulations have been run under
a variety of conditions for both the hydrodynamic and morphological parameters.

4.2. Topography developmemt

Simulations presented herein are all characterized by an initially planar slope with
β = 0.02, a transition concave profile near x = 120 m and a horizontal bottom accord-
ing to the bathymetry introduced in § 3.1. As previously specified, the hydrodynamic
conditions always refer to waves approaching normally to the coast. The deep-water
wave height H∞ is increased linearly with time from zero at t = 0 up to to its final
value, and then kept constant through the rest of the simulation. This final value
is achieved around th = 20 min. In all the simulations, the initial small perturbation
is introduced only in the topography while the water is assumed to be initially at
rest. Presumably, similar results would be obtained in the opposite case or in case of
starting from perturbations in both the topography and the water.

For high values of morphological diffusivity, γm, the initial perturbation is washed
out and the system goes back to the basic equilibrium topography. This is in accord-
ance with the linear stability analysis presented in Falqués et al. (2000). Below some
threshold in γm, the perturbation grows in time and large-scale rhythmic topography
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x

y

Figure 2. Topographic refraction of the incident waves by a transverse bar. The wavenumber field
of the waves on the transverse bar (white) and the adjacent troughs (dark) is represented. The
shoreline is at the bottom (y-axis).

develops. Even though quite complex patterns can form, the results show that the dy-
namics are governed by the competition between two basic configurations: crescentic
bars (hereinafter CB) and transverse bars (TB), the former already predicted by the
linear stability analysis of Falqués et al. (2000) while the latter is new. Depending on
the model parameters pure CB or TB patterns or mixed topographies can occur. We
first describe pure TB and CB growth and then report on the competition between
these morphologies.

4.3. Transverse bars

Figure 1 shows different stages during the formation of a transverse bar pattern. It
can be seen that there is a transition from a random topography (a) where no pattern
can be detected into a trasverse one (b, c). Parameters considered in this simulation
are: incident wave period = 6 s, N = 0.005, γb = 0.8, H∞ = 1 m (as a result the
breaking line is around 50 m), cd = 0.002, γm = 0.01 m2 s−1. In all the simulations,
αm = 0.01 m has been chosen. The motivation for this choice will be discussed in § 6.
The configuration after one hour is already very similar to the final one although some
readjustments (see for example the area around 100 m in the alongshore direction) in
the position and spacing of the features are evident.

The flow pattern related to the features is, as expected, with onshore flow over
the crests of the bar while offshore flow can be observed in the troughs. This is
consistent with the general property that a shoal (pool) in the surf zone tends to
create an onshore (offshore) net flow because of the increase (decrease) in wave
breaking. However, in the case of transverse bars there is another important effect
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Figure 3. Flow pattern produced by artificial transverse bars either with wave refraction (a) or
without wave refraction (b). Bar maximum relief 0.1 m, wave height H = 1 m. Shoals and troughs
are represented by light and dark colours respectively. The maximum arrow in (a) corresponds to
0.5 m s−1 in (a) and to 0.09 m s−1 in (b), respectively. The coastline is at the bottom of each plot.

which reinforces the onshore flow at the crests. Because of the shallow depth over
their crests, the bars produce a significant wave refraction so that the wave fronts
slow down over the crests in comparison with the troughs (see figure 2). This ‘focusing
lens effect’ on the incident waves is clearly visible by the casual observer whenever
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Figure 4. Growth of the maximum and minimum perturbation (absolute value) and of the
maximum velocity for the simulation shown in figure 1.

transverse bars are present (see e.g. Falqués 1989). It produces a strong onshore
current at the crests (up to 0.7 m s−1) and was suggested by Niederoda & Tanner
(1970) to be the main cause of transverse bar formation. Our simulations confirm the
hypothesis of Niederoda & Tanner (1970): model runs which left out wave refraction
did not result in the growth of transverse bars. As shown in figure 3, model runs
without wave refraction and with artificially created transvers bars (through the initial
topography) gave a much weaker circulation (not larger than 0.09 m s−1 for a bar
relief of 0.1 m) with a somewhat different structure that explains why the bars do
not grow in this case (see, for instance, the offshore directed current at the shore
attachment). An interpretation of the importance of wave refraction for transverse
bars will be given in § 5.3.

The growth of the features is also evident by analysing the growth rates of max/min
amplitude and maximum velocity (figure 4). Maximum amplitude values for both the
bed perturbation and the velocity field do not grow significantly during the first 3
hours. During this time interval, sediment is simply being organized into the transverse
bar shape and only afterwards is a sharp growth in the amplitudes observed. The
final amplitude of the features in the model is around 0.2 m, a value in reasonable
agreement with the field observations (Niederoda & Tanner 1970; Konicki & Holman
2000). Nevertheless, such a comparison cannot be conclusive as, due to the previously
indicated shortcomings in the way refraction is computed, the model does not reach
a final steady equilibrium or even a state where a decay in the growth rates can be
detected. The spacing of the features is around 30 m corresponding to around half the
width of the surf zone. This latter value has been found to be stable and insensitive to
changes in wave height or in the model parameterization but no rigorous comparison
with field measurements could be made because of the lack of detailed data.

4.4. Crescentic bar

The formation and development of crescentic bars has also been successfully sim-
ulated by the present model and its sensitivity to the parameterization analysed in
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Figure 5. Formation and development of a crescentic bar pattern. (a) Initial bed level perturbation,
and (b) final configuration reached after 3 h. Shoals and troughs are represented by light and dark
colours respectively. Arrows represent the velocity field (maximum velocity in (b) = 0.38 m s−1). The
coastline is at the bottom of each plot.
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Figure 6. Growth of the maximum and minimum perturbation (absolute value) and of the
maximum velocity for the simulation shown in figure 5.

detail. Figure 5 shows results obtained when running the model with the same param-
eterization previously considered apart from H∞ = 0.5 m (breaking is around 25 m
in the cross-shore direction). Figure 5(a) shows the initial, randomly generated, bed
perturbation while figure 5(b) shows the final configurations reached after 3 h. The
formation of a crescentic pattern with troughs and shoals alternating around the
breaking line is evident. The flow pattern again presents onshore (offshore) flow over
the shoals (troughs) inside the surf zone and vice versa outside the surf zone. The
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Figure 7. Formation and development of a mixed bar pattern. Shoals and troughs are represented
by light and dark colours respectively. The coastline is at the bottom.

morphology and the circulation are in qualitative agreement with the linear instability
mode found in Falqués et al. (2000). However, a finite amplitude can be determined.
For the simulation presented in figure 5 it is around 0.2 m (in other cases a growth up
to 0.5 m can be simulated) and, as shown in figure 6 the growth rate of the pattern
is slower but the trend is very similar to that observed for the transverse bar pattern
(figure 4). The intensity of the circulation associated with the bar is about 0.35 m s−1.
In fact, although sediment is being moved and bedforms begin to appear, bed per-
turbations do not grow significantly during the first 2 h. Again for the crescentic bar
pattern the final spacing is proportional to the width of the surf zone. In general
agreement with the field observations (see for example the observations reported in
Bown & Inman 1971), it is between 4 and 5 times the width of the surf zone.

4.5. Transverse versus crescentic bars

A question arises as to why two simulations with an essentially similar parameter-
ization result in such different patterns. First, it is important to underline that the
transition between one pattern and the other is difficult to detect accurately since
it corresponds to complicated topographies where the dominant pattern is difficult
to discern. Figure 7 shows the results of a simulation run with the same parameter-
ization as figure 1 apart from N = 0.0075. It provides a clear example of a mixed
topography with transverse and crescentic bars developing non-uniformly (note the
smaller amplitude of the bars ‘shaded’ by the presence of a crescentic shoal). The
possibility that such complicated topography might arise should not be considered as
a shortcoming of the model as many observations report similar patterns in nature
(see for example Goldsmith et al. 1982). Nevertheless, it is possible to find some trends
in the parameter space that favour either CB or TB formation.

The numerical simulations show that small values of the morphodynamic diffusion
γm result in the dominance of transverse bars. Higher values lead to mixed patterns, to
crescentic bars or to stability. The momentum diffusion coefficient, N, plays a similar
role, low values leading to TB, higher values leading to CB. With respect to wave
height, the trend is that small H favours CB while with larger waves TB dominate. On
the other hand, the analysis related to the effect of the friction coefficient, cd, clearly



396 M. Caballeria, G. Coco, A. Falqués and D. A. Huntley

Series 1;

0.08

0.04

0 1 2 3 4
Time (h)

M
ax

 b
ed

 p
ur

tu
rb

at
io

n
(m

)
Series 2; Series 3

0.12

(a) Series 1;

0

–0.02

0 1 2 3 4
Time (h)

B
ed

 p
ur

tu
rb

at
io

n 
(m

)

Series 2; Series 3

0.01

(b)

–0.01

Figure 8. Growth rates for three simulations differing only in the seed used for the generation of
the initial topography. (a) Maximum bed perturbation, and (b) perturbation at a fixed location
inside the surf zone.

indicates that, maintaining all the other parameters constant, small (large) values of
friction result in the appearance of the crescentic (transverse) sand bar pattern.

Another aspect of interest, especially as we are dealing with nonlinear simulations,
concerns the importance of the initial perturbation imposed on the sea bed elevations.
In order to test the importance of the initial conditions and determine how much they
can affect final configurations, simulations have been run using the same parameters
and changing only the seed used when producing the initial sea bed perturbation.
Results for three simulations (series 1, 2 and 3) all leading to the appearance of
a transverse bar pattern are shown in figure 9. It is evident that growth rates of
the maximum amplitudes are only slightly affected by such changes (figure 8a). On
the other hand, when analysing the growth rate at single locations inside the surf
zone, significant differences (in magnitude and even sign) can be observed (figure 8b).
Overall, the three simulations all result in a transverse bar pattern with the same
spacing although the locations of troughs and shoals differ (figure 9). The effect of
the initial bed perturbation amplitude on the process of pattern formation has also
been analysed and, as expected, the only difference detected between the different
simulations is in the growth rates, with bigger initial amplitudes resulting in a faster
growth of the features. The physical mechanism responsible for the generation of the
bars and the physical interpretation of the dominance of TB or CB will be discussed
in § 5.

5. Physical mechanisms
5.1. Bottom evolution equation

Even though a predictive modelling of sand bar formation and evolution needs to
solve the full system of the governing equations (2.1), (2.2) and (2.3), a simple bottom
evolution equation derived only from water and sediment mass conservation, i.e. (2.1)
and (2.3), is very useful in understanding the physical mechanisms responsible for the
growth of the bedforms.

Since the hydrodynamics respond much faster than the morphodynamics, the
common quasi-steady approximation, e.g. that the flow adjusts instantaneously to
the topographic changes, will be considered in this section. Thus, the time derivative
drops out of the mass conservation equation (2.3) so that

∇ · v = − 1

D
v · ∇D. (5.1)
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Figure 9. Final configurations obtained for three simulations differing only in the seed used for the
generation of the initial topography. Shoals and troughs are represented by light and dark colours
respectively. The coastline is at the bottom of each plot.

In this section, the sediment transport parameterization (2.10) will be extended to
allow for a nonlinear dependence on the current

q = α(u0)v
m−1v, (5.2)

where v = |v|, α(u0) is the wave stirring coefficient and u0(x, y) is the wave orbital
velocity. On the other hand, the morphological diffusion has been disregarded in this
section since it produces just a damping of the bedforms and it is not essential for
the generation mechanism.

The bottom evolution equation follows from the sediment conservation equation
(2.1) and the expansion

∇ · q = vm−1v · ∇α+ αvm−1∇ · v + αv · ∇(vm−1).
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Taking the identities

∂

∂xi
(vm−1) = (m− 1)vm−3vj

∂vj

∂xi
,

v · ∇α− α

D
v · ∇D = αv · ∇ ln

( α
D

)
,

and (5.1) into account, the equation

∂zb

∂t
= −αvm−1v · ∇ ln

( α
D

)
− (m− 1)αvm−2aT (5.3)

is finally obtained, where aT = v ·∇v ·v/v is the tangential component of the advective
acceleration of the fluid.

Equation (5.3) gives the morphological effect of any mean flow pattern, v(x, y, t),
according to the sediment transport parameterization (5.2) and will be hereinafter
referred as the BEE (bottom evolution equation). According to it, accretion will occur
at the locations where the right-hand side is positive and erosion where it is negative.
The physical meaning of the second term on the right is simple: a deceleration
of the flow (aT < 0) produces a decrease of sediment carrying capacity and hence
accretion, since the sediment flux decreases downstream. This term appears only if the
sediment transport is nonlinear in the mean current, m > 1. The first term produces
accretion whenever the current opposes the gradient in the α/D function. This can be
understood by decomposing it into two terms proportional to −v · ∇α and to v · ∇D
respectively. Since the sediment carrying capacity of the flow is proportional to α, a
current running in the direction of the gradient of α (i.e. −v · ∇α < 0) will produce
a downstream increase of sediment flux and, therefore, erosion will occur. Finally, a
current running into deeper water (i.e. v · ∇D > 0) should slow down due to mass
conservation. This causes a convergence of the sediment flux since it is proportional
to a power of the flow velocity and, thereby, accretion will take place. It is important
to realize that the BEE gives the morphological evolution only if the flow pattern is
known and this requires solution of the full system (5.3), (2.2) and (2.3). However,
since the flow associated with crescentic and transverse bars obtained by numerical
simulation in § 4 is in agreement with physical intuition, the BEE will provide a quite
simple physical explanation of the generation of both patterns.

5.2. Bed–surf instability mechanism

The possibility of a positive feedback between the growing rhythmic topography and
the circulation induced by breaking waves over this topography will be analysed in
this section. The analysis is similar to that presented in Falqués et al. (2000) but it is
now extended to include wave refraction.

In case of suspended-load transport and in accordance with the discussion in § 2.2.2,
α(x)/D(x) is expected to increase from the shoreline up to a maximum close to the
breaking line and to decrease seaward of this maximum. This is due to the fact that
the stirring of the waves on the sediment is maximum at the breaking line. Since
the simulations presented here have been carried out with the sediment transport
parameterization (2.10), i.e. m = 1, let us concentrate on the effect of the first term on
the right-hand side of the BEE which is the only non-vanishing one. Some comments
on the effect of the second term will be given in § 5.3.

According to the BEE, a shoal in the surf zone will grow if the current runs on it
against the gradient in α/D, that is, shoreward. Therefore, a positive feedback between
the rhythmic topography and the circulation will occur if the current is onshore over
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the shoals and offshore over the pools. To investigate now whether this is the case,
let us look at the cross-shore momentum input from the breaking waves:

Fx = − 1

ρD

(
∂Sxx

∂x
+
∂Sxy

∂y

)

= −1

8
gγ2

b

(
1

D

∂

∂x

[(
1

2
+ (cosϕ)2

)
D2

]
− D

2

∂

∂y
(sin 2ϕ)− ∂D

∂y
sin 2ϕ

)
, (5.4)

where (2.4), (2.5) and (2.6) together with kx = −k cosϕ, ky = k sinϕ have been taken
into account. Also, the phase and the group celerity are considered to be approximately
equal, c ' cg . Let us assume that the perturbation of the mean free surface is relatively
small compared to the bed perturbation, so that the perturbation in water depth is
given approximately by −h(x, y, t) = −(zb − z0

b). In view of the numerical simulations
and of the analysis of the ‘flow over topography problem’ in Falqués et al. (2000) this
is reasonable. For bedforms with relatively small amplitude the wave angle is not too
big, so that 1 + 2(cosϕ)2) ' 3 and, also, the term −(∂D/∂y) sin 2ϕ = (∂h/∂y) sin 2ϕ
can be neglected (second order in the perturbations). Thus, the perturbation in the
cross-shore momentum input is

δFx =
1

8
gγ2

b

(
3
∂h

∂x
+
D0

2

∂

∂y
(sin 2ϕ)

)
. (5.5)

With respect to the basic state, the first term provides an onshore force on the
water column at the seaward portion of the shoal and offshore at the shoreward
portion. Thus, the resulting flow direction is not clear from the present analysis.
Furthermore, as also shown by Sancho et al. (1995), even though the wave radiation
stress is the primary cause for the currents, the actual circulation is also affected by the
mean surface slopes. However, this term (in combination with pressure gradients) was
already considered in the linear stability analysis of Falqués et al. (2000) and it was
seen to be capable of producing a net onshore current for certain shapes of the shoal
(those corresponding to the linearly unstable modes). The second term, related to
wave refraction, was not considered in that paper and it produces a net onshore force
on the water over the entire shoal. Indeed, consider a shoal extending symmetrically
over both sides of the y-axis (see figure 2). Due to wave refraction, ϕ > 0 for y < 0
and ϕ < 0 for y > 0 so that ∂/∂y(sin 2ϕ) < 0 on average over the shoal. This terms
appears thanks to the inflow of wave cross-shore momentum through the lateral flanks
of the shoal produced by refraction. Cross-shore wave momentum is focused over the
shoals where it is dissipated as waves break. The magnitude of this term increases
onshore since |ϕ| increases onshore as the wave rays bend towards shallower water as
they propagate onshore. Therefore, the combined effect of both terms is expected to
produce a net onshore current over the shoals and just the opposite over the pools in
between the shoals. Thus, a positive feedback is expected between morphology and
hydrodynamics. The reason why this mechanism can generate two patterns that are
so different will be explained in the next section.

5.3. Crescentic and transverse bars

To understand the occurrence of both patterns, let us assume that the corresponding
shoals in the surf zone have a cross-shore extent of ∼ lx and an alongshore spacing
of λ. Let ∆h be the scale for the bed level perturbation and ∆ϕ the scale of the angle
between the refracted wavevector and the shore normal. Then, the corresponding
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scaling of the first and the second terms F1, F2 in (5.5) gives

F1

F2

∼ 3

2

∆h

d∆ϕ

λ

lx
, (5.6)

with d being the scale for the water depth. The bottom perturbation h and the wave
angle ϕ both grow in time proportionally to each other at the initial formation.
Therefore, the magnitude of this ratio can be evaluated from their typical values
for moderate-amplitude bedforms: ∆h ∼ 0.1 m and ∆ϕ ∼ 0.1 rad. Assuming a water
depth scale of d ∼ 1 m the scaling

F1

F2

∼ 3

2

λ

lx
(5.7)

is obtained. Two limits can now be considered:

(a) Long-wavelength limit (λ � lx). In this case F2 is negligible, that is, wave
refraction is negligible and the emerging pattern is the crescentic bar pattern predicted
by the linear stability analysis of Falqués et al. (2000) where only F1 was accounted
for. Since the current, with respect to the basic state, tends to be offshore at the
shoreward part of the surf zone shoals, the shoals cannot grow towards the coastline
and are therefore located close to the breaking line. The onshore current over the
surf zone shoals crosses the breaking line and therefore creates pools seaward of the
breaking line because the gradient in α/D has an opposite direction in the shoaling
region. Conversely, and again with respect to the basic state, the offshore current over
the surf zone pools produces shoals seaward of the breaking line. In this way, the
typical mirroring effect of alternating shoals and pools is created.

(b) Short-wavelength limit (λ ∼ lx). In this case, both F1 and F2 are comparable and
refraction is important. Now, because of F2, the current is onshore over the entire
shoal even if the shoal extends almost up to the coastline. This fact, in combination
with the small alongshore spacing between the shoals, gives finger-like bedforms
elongated in the cross-shore direction, that is, transverse bars. This explanation is
in agreement with the results of the numerical simulations and the suggestions of
Niederoda & Tanner (1970) that wave refraction is essential for TB generation. The
shape of the TB is in contrast with that of CB since the latter have rounded shoals
because the shoals are widely spaced and with small cross-shore extent.

Thus, CB and TB are just the long-wavelength and the short-wavelength limits
of the same instability mechanism. In the case of TB the circulation is more intense
because the net hydrodynamic force is onshore over the entire bar whereas for CB
there is an offshore component over part of the surf zone shoals. This is clearly seen
in the numerical simulations and, as a result, the growth of TB is faster and TB
dominate in the absence of dissipative damping. However, since TB essentially have
shorter wavelengths than CB, they imply stronger gradients in the topography and
in the hydrodynamics. Therefore, they are more damped than CB by an increasing
diffusivity both morphologically and hydrodynamically (momentum). This provides
the explanation of why TB dominate in the case of low γm and N while CB tend
to dominate for high values. The role of wave height becomes evident if the non-
dimensional morphological diffusion is considered (the same scaling used in Falqués
et al. 2000 has been adopted here):

Γ =
γm

αm
√
gH

. (5.8)
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It is then clear that large waves result in a smaller non-dimensional diffusivity if γm
and αm are kept constant and lead therefore to TB.

In the set of input parameters of the model, the wave height, H , and αm and γm
are independent. In nature however the wave stirring, αm, and the morphological
diffusivity, γm, clearly depend on the wave height. Even though the relationships
are dependent on the parameterization used, an impression of the trends can be
obtained by considering the Bailard formula for suspended load, (2.11). In this case,
the expression

Γ =
εsγb

4

√
gH

w
(5.9)

is obtained, where w is the sediment grain fall velocity and the shallow-water approxi-
mation for the orbital velocity, u0 = 0.5H

√
g/D has been used. This expression reveals

that when the dependence of γm upon H is considered, the influence of H on the
transition TB/CB dominance is reversed with respect to the raw output of the model,
where γm and H are handled as if independent. It now becomes apparent that for very
high waves and very fine sand (small w) there is stability: no alongshore rhythmicity
appears. Moderate waves and less fine sediment lead to crescentic bars and smaller
waves and relatively coarse sand lead to transverse bars. This is consistent with the
sequence of wave-dominated beach changes described by Short (1999): ‘dissipative’,
‘rhythmic bar and beach’, ‘transverse bar and beach’. On the other hand, a necessary
condition for the growth of the instabilities is an α/D function increasing seaward in
the surf zone, a condition not met for bedload sediment transport. Therefore, for even
smaller waves and coarser sediment, suspended load would not occur and a second
region with no large-scale rhythmic features would exist. This would correspond to
the reflective beach stage of Short (1999). The simulations presented in § 4 were per-
formed for the case of a sediment transport linear in the current, e.g. m = 1, in which
case the second term on the right-hand side of the BEE vanishes. For an m exponent
larger than 1, the first term has just a different proportionality factor so that the
mechanism just described is expected to work in a similar way. We should only look
for the additional effect of the second term on the right-hand side. This is easily seen
to reinforce the generation of the crescentic bar since the associated circulation has
deceleration (aT < 0) over the shoals and acceleration (aT > 0) over the pools. Thus,
the mechanism for the crescentic bar generation does not depend on the particular
choice of the exponent m in the sediment transport, a result that agrees with the
findings by Werner & Fink (1993). In the case of TB the onshore current decelerates
where the bars attach to the shoreline and accelerates at the seaward end of the bars.
Therefore, if m > 1, the aT term in the BEE would enhance the shoreline attachment
(possible cusp formation) and would counteract the term related to ∇(α/D) at the
seaward end, thereby controlling the length of the bars.

6. Discussion
The primary limitation of the present study is its inability to reach saturation to an

equilibrium amplitude because of the critical angle for wave refraction. This problem
does not prevent the development of realistic scales for features (a few decimetres).
Several effects that have been neglected in the present approach should be considered
for future research on the final saturated stages of the bars. First, it should be stressed
that the present sediment flux parameterization is linear in the mean-current velocity.
Such an assumption is strictly valid only for small-amplitude features (with the wave
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orbital velocity exceeding the mean current) although it has been argued that the
nonlinear terms do not change the essense of the patterns. This is confirmed by
the fact that the finite-amplitude patterns of flow and morphology resulting from
the numerical simulations favourably compare with field observations. However, the
nonlinear terms can have an influence on the final shape and amplitude. The same
applies to the influence of perturbations on the wave stirring, which has proven to
be of no importance for the growth to realistic amplitudes. Wave refraction due
to the currents may also be important as a saturation mechanism and should be
incorporated.

Another simplification is that shoaling has been neglected based on the assumption
that wave breaking is the main driving force of surf zone circulation. This has
been carefully checked and the main conclusion is the following. For nearly normal
incidence, the main hydrodynamic forcing comes from

∂Sxx

∂x
' 3

2

∂E

∂x
. (6.1)

In the surf zone, the wave energy density is proportional to D2 while in the shoaling
zone it is roughly proportional to D−1/2 as it can be seen from cg ' c ' √gD. Thus,
a given perturbation in water depth will produce a perturbation in energy four times
larger if it is located in the surf zone than if it is located in the shoaling zone. The
same applies for ∂Sxx/∂x. Now, since the perturbations in ∂Sxx/∂x are proportional
to the perturbations in ∂D/∂x, the relevant question is whether the perturbations in
water depth are larger in the surf zone or in the shoaling zone. For the transverse bar
pattern, the perturbations out of the surf zone (if any) are very small. Therefore, the
effect of shoaling can clearly be neglected. For the crescentic bars, the perturbations in
water depth in the shoaling zone are about two times smaller than the perturbations
in the surf zone at the initial stages of the pattern formation. Therefore, the forcing
because of shoaling would be about 1/8 of the forcing due to breaking so that it can
be safely neglected for the initial formation. During the final stages of the simulations,
the water depth perturbations outside the surf zone become comparable, in general,
to the perturbations inside the surf zone. However, despite the differences in the ratio
between ‘inner amplitude’ and ‘outer amplitude’ all these solutions present the same
spatial pattern in the flow and in the morphology. This indicates that even though
the shoaling could be significant for crescentic bars of large amplitude, it does not
affect the initial development of the features nor their essential characteristics.

A potential important limitation is the simplified description of sediment transport
based on the departure from equilibrium due only to the net currents while the
perturbations in wave-driven transport are neglected. Although this assumption has
been shown to be reasonable, it deserves future attention.

Field observations of crescentic patterns are usually related to the presence of an
initially uniform longshore bar and the pattern is superimposed on it to give what is
generally called a ‘crescentic bar’. Work is in progress to evaluate if the mechanism
proposed herein also operates over this kind of topography. That study, the first step
towards specific comparisons with field observations, clearly involves changes in the
sediment transport parameterization with, for example, a stirring related to the water
depth. Such an effort has already been undertaken and preliminary results (Coco et
al. 2002) seem to indicate the appearance of rhythmic features also over an initially
barred profile (uniform in the alongshore direction).

The present study has been limited to waves approaching normally to the coast
in deep water. Nevertheless, the existing linear stability analyses for oblique wave
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incidence (see, for instance, Deigaard et al. 1999 and Ribas, Falqués & Montoto
2000) suggest that rhythmic patterns can self-organize in this case also and due to
similar mechanisms.

An important aspect when dealing with the formation and development of mor-
phological features is the time scale of growth of the patterns and, more generally,
of the different processes operating in the nearshore region. In the parameterization
proposed here, αm measures the intensity of the wave stirring and can be evalu-
ated according to any particular sediment transport parameterization. In the scaling
presented in Falqués et al. (2000) the morphological time scale was proportional to
α−1
m (equation 18 in that paper). This implies that αm has two effects: (i) to deter-

mine the ratio ε between the hydrodynamical and the morphological time scales and
(ii) to give the dimensional growth time of the bars. It was found that for a realistic
range of values, the variation of ε produced hardly any effect on the non-dimensional
instability analysis. Thus, the effect of changing αm is simply to change the growth
time of the bars. In the numerical simulations presented in § 4, a default value of
αm = 0.01 m has been used. According to field data presented by Peters & Dette
(1999) for waves of H ' 0.7 and 1.2 m, and grain size about 0.3 mm, a reasonable
estimate for the maximum sediment concentration at the bed in the surf zone in such
conditions can be some 10 g l−1, i.e. 0.004 (volume of sand per total volume). Taking
into account the fact that the vertical distribution was relatively uniform or smoothly
decreasing upwards and the water depth was about 1 m, a reasonable estimate for
the depth-integrated concentration would be αm ' 0.002 m. This would mean that the
use of αm = 0.01 m would develop morphological features about a factor 5 too fast.
Therefore, the growth times obtained in § 4 must be multiplied by a factor of about
5 to obtain realistic times. The use of a value larger than that estimated from field
observations was motivated by computing concerns: fewer time steps are needed to
simulate morphological evolution over a given total real time. This can be safely done
as long as the morphological time scale remains much larger than the hydrodynamical
time scale (ε� 1).

Finally, it is important to underline that the instability mechanism can operate only
if the infragravity wave energy fraction is not too large. Otherwise, the wave stirring
function α(x) would show a nearly uniform profile across the surf zone. In such a
case, both earlier studies (Falqués et al. 2000) and the present research indicate that
instabilities do not develop. This is in agreement with the observations by Holman
& Sallenger (1993), where: ‘The alongshore bar became crescentic soon after a
storm when the infragravity band variance was observed to decline’ and also with the
observation that high-energy, planar beaches (i.e. Scripps, Torrey Pines), which tend to
have a lot of infragravity energy, do not tend to have crescentic or transverse patterns.

7. Conclusions
It has been shown that large-scale patterns in the nearshore region can arise from

small randomly placed irregularities of the sea bed. Such perturbations of the sea
bottom grow and self-organize to a regular spacing due to a positive feedback between
flow and morphology without the need of any low-frequency hydrodynamic external
forcing like edge waves. The positive feedback between flow and morphology is based
on three essential ingredients: (i) a wave stirring function increasing seaward faster
than water depth up to the breaking line (its actual dependence does not affect the
results), (ii) a depth-limited wave height in the surf zone, and (iii) the topographic
refraction of the waves. These three ingredients are likely to be present in the surf
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zone if sediment transport takes place mainly in suspension. Under such assumptions,
more (less) dissipation of momentum occurs over a shoal (trough) with respect to the
alongshore uniform equilibrium. Thus, a larger (smaller) onshore hydrodynamic force
occurs at the shoals (troughs) and a net onshore (offshore) current is created at the
shoals (troughs). This is supported by many observations (see for example Sonu 1972,
1973; Wright & Short 1984). The assumption of a seaward-increasing wave stirring
then ensures that a positive (negative) budget of sediment occurs at the shoals (pools)
and positive feedback is thus created.

The model can exhibit a complex temporal behaviour with a variety of patterns
evolving, merging and changing length-scale, but the dynamics are clearly driven by
the competition between two main patterns that, like features observed in nature,
have been called crescentic bars (CB) and transverse bars (TB). The former are a
double series of shoals and pools alternating on both sides of the mean breaking line
showing a mirroring effect. The latter are finger-like elongated bars perpendicular to
the shore. The emergence of these two very different patterns from the same ‘bed–surf’
coupling has been related to the fact that wave refraction increases in importance
with decreasing alongshore spacing of the features. Thus, for closely spaced shoals
(compared to their cross-shore extent) refraction becomes very important and permits
their growth across the whole surf zone, resulting in elongated shore-normal bars. For
widely spaced shoals, refraction is negligible and the circulation coupled to them al-
lows only growth close to the breaking line, resulting in crescentic bars. In the absence
of damping, TB dominate due to the stronger circulation driven by wave refraction.
However, due to their closer spacing, they are associated with strong gradients both in
the morphology and in the hydrodynamics. As a result they are more inhibited by in-
creasing diffusivity of both the morphology and the hydrodynamics. Therefore, for low
diffusion TB dominate while for relatively large diffusion CB dominate. For very high
diffusivity neither of the patterns grows and the initial alongshore uniform morphol-
ogy is stable. The conditions for the occurrence of either TB or CB, or for the absence
of large-scale rhythmic features in the model can also be interpreted in terms of wave
height and sediment grain size by using the Bailard (1981) parameterization of sedi-
ment transport (see (5.3)). In this case, the predictions of the model compare well with
the beach state sequence described by Short (1999): the sequence of stability–CB–TB–
stability when going from high to small waves and from fine to coarse sand. Physical
explanations for the precise spacing of the bedforms are more difficult to formulate
but our numerical results show that the alongshore wavelength of both patterns scales
with the width of the surf zone, being 4–5 times larger for CB and about half for TB.

In the past, Bowen & Inman (1971) have explained CB as the morphological
response to an external forcing by edge waves. Alternative explanations based on
linear morphodynamic instabilities have been given by Vittori et al. (1999), Deigaard
et al. (1999) and Falqués et al. (2000). However, the present work is the first in
which finite-amplitude modelling of CB has been presented. The present findings
are even more important in the case of TB, since no model, either hydrodynamically
driven or based on self-organization, has previously provided an explanation for these
elongated shore-normal bars that are frequently observed in nature. In particular, the
linear stability analysis of Falqués et al. (2000) did not predict the formation of TB
since wave refraction was not included. Similarly, the hydrodynamically driven model
of Holman & Bowen (1982) predicted a variety of different complex patterns but
not this type of transverse bar. Furthermore, the earlier suggestion of Niederoda
& Tanner 1970, based on field and laboratory experiments, that topographic wave
refraction was the primary cause of TB has now been clearly confirmed. The present
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explanation based on normal wave incidence processes is also in agreement with the
recent finding of Konicki & Holman (2000) that TB appear not to be correlated with
longshore currents.

Due to the lack of detailed measurements, comparisons with field observations can,
at present, only be made on a qualitative basis. The shape and spacing of the patterns
resemble those described by several authors (Davis & Fox 1972; Goldsmith et al.
1982; Konicki & Holman 2000; Niederoda & Tanner 1970; Short 1999) but only a
limited number of studies have given an indication of the prevailing hydrodynamic
conditions (Konicki & Holman 2000; Niederoda & Tanner 1970). Observed and
modelled feature amplitudes are in agreement though it should be stressed that such
comparisons cannot be conclusive due to the difficulty of reaching a steady state in
the numerical runs. Specific field measurements are needed in order to test the present
findings and in particular to determine the flow patterns over developing features, the
form of the cross-shore variation of the wave stirring and morphological diffusion
functions. Further field observations are also required to test the model predictions
of the range of conditions under which the patterns emerge.
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Appendix A. Quasi-steady morphodynamic processes
The morphological evolution follows from the sediment budget in a water column,

that is, the amount of the sediment that goes in through the lateral walls of a control
volume that either accretes at the bottom or enters into suspension in the water
column. This can be written as

−∇ · q = (1− p)∂zb
∂t

+
∂C

∂t
(A 1)

(Caballeria 2000) where p stands for porosity, 1 − p is the volumetric rate between
dry sediment and wet sediment, z = zb(x, y, t) is the level of the sea bed, q is the
horizontal sediment flux vector (volume per length and time units) and C is the
vertically integrated sediment concentration (volume per area unit).

For quasi-steady morphodynamic processes (a definition is provided below), this
equation can be reduced to (2.1). Let us consider a horizontal length scale given by
the horizontal gradients in sediment flux, [Lh], and a vertical length scale, [Lv]. If
the scale for the volumetric three-dimensional sediment concentration is [c], the scale
for two-dimensional vertically integrated concentration will be [c][Lv] and the scale
for the sediment flux, q, will be [c][V ][Lv] where [V ] is the scale for the water flow
velocity. Thus, let us consider the scaling

(x, y) = (x′, y′)[Lh], (A 2)

zb = z′b[Lv], (A 3)

C = C ′[c][Lv], (A 4)

q = q′[c][V ][Lv]. (A 5)
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With respect to time, three scales can be defined as follows: the morphological time,
[Tm], which is the time scale of the bottom evolution; the scale of the variations in the
suspended sediment concentration, [Tc]; and the hydrodynamic time, [Th] = [Lh]/[V ].
In the situation of interest for the present work, [Lh] ∼ 50 m and [V ] ∼ 0.5 m s−1 so
the hydrodynamic time scale (wind/swell-wave-averaged hydrodynamics) is of order
Th ∼ 102 s. Two time variables may then be defined:

t = t′[Tm] = t′′[Tc], (A 6)

so that the scaled bottom evolution equation (A 1) reads

(1− p)∂z
′
b

∂t′
+ [c]

[Tm] [V ]

[Lh]
∇′ · q′ + [c]

[Tm]

[Tc]

∂C ′

∂t′′
= 0. (A 7)

The storage term ∂C/∂t can be neglected provided that

[c]
[Tm]

[Tc]
� [c]

[Tm][V ]

[Lh]
, (A 8)

that is,

[Tc]� [Lh]

[V ]
= [Th], (A 9)

which means that the relevant changes in sediment concentration must be much
slower than the hydrodynamics. The class of processes fulfilling this condition and
described by the simplified equation

(1− p)∂zb
∂t

+ ∇ · q = 0 (A 10)

can be called quasi-steady morphodynamic processes. In this case, the morphological
time scale can easily be estimated. Because of the definition of the scales, the first
term in the bottom evolution equation (A 7) is of order one. This means that the
coefficient in front of the divergence of the sediment flux must be of order one too.
This determines the morphological time scale

[Tm] =
[Lh]

[V ][c]
� [Lh]

[V ]
= [Th]. (A 11)

The inequality states that the morphological time scale is much larger than the hy-
drodynamic one and follows from the experimental fact that the volumetric sediment
concentration is typically not larger than [c] ∼ 0.01.

The simplification cannot be made if the relevant changes in sediment concentration
occur at the same time as the hydrodynamics, [Tc] ∼ [Th] ∼ 102 s. For instance, the
storage term cannot be neglected if the potential morphological effect of infragravity
waves is included.

Appendix B. Sediment transport formulation
The physical grounds for the sediment transport parameterization, (2.10), used

in this paper will be presented here. Prior to introducing sediment transport it is
convenient to define some hydrodynamic concepts. Regular waves of period T and
height H are assumed so that mean quantities are defined by:

〈f〉 =
1

T

∫ T

0

f(t) dt.
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If D0 is the depth under wave troughs at a given position, the current below troughs
is defined by

U =
1

D0

∫ zb+D0

zb

〈u〉 dz,
where z is the vertical coordinate, z = zb is the bed level and u is the instantaneous
fluid velocity at a given position. This is different from the total depth-integrated
current v of the shallow-water formulation, (2.2) and (2.3), which is given by

v =
1

D̄

〈∫ zs

zb

udz

〉
,

where z = zs is the instantaneous sea level and D̄ = 〈zs− zb〉. We will refer to it as the
total current. The total water volume flux at a given position can then be written as

D̄v = D0U +m, (B 1)

where m is the water volume flux due to the waves which is located between troughs
and crests.

Let us now turn to sediment transport. It is reasonable to expand the total sediment
flux (bedload and suspended load) into three contributions: transport driven by the
currents, transport driven by the waves and downslope transport driven by gravity:

q = qc + qw + qg. (B 2)

By ‘transport driven by the waves’ we mean the transport due to wave asymmetry,
wave skewness, etc. The ‘transport driven by gravity’ is the downslope contribution
caused by gravity. This approach may be supported for instance by the widely adopted
formulation given by Bailard (1981).

Our first assumption on sediment transport is that the current-driven transport
consists of two contributions, one proportional to the water volume flux below
troughs and the other proportional to the water volume flux above troughs:

qc = c1D0U + c2m, (B 3)

where c1 and c2 are the effective depth-averaged sediment concentrations below and
above troughs respectively; c2 is expected to be much smaller than c1. In general,
the concentrations c1, c2 can depend on the current U so that qc will not be
linear in U . However, in the case where the net currents are smaller than the wave
orbital velocity, u0, the concentrations c1, c2 will depend mainly on u0 and can be
considered as independent of the current (see, for instance, Bailard’s 1981 formulation
for |U | � u0). The bedload transport contribution is assumed to be included in the
effective concentration below troughs, c1. Notice that, consistent with the shallow-
water approximation used in the present work, the possible contributions due to the
stratification of both the flow and the sediment concentration are disregarded in (B 3).
This expression corresponds in fact to a double-layer model. By using (B 1), (B 3) can
be rewritten as

qc = c1D0v − (c1 − c2)m. (B 4)

Let us consider the steady alongshore-uniform equilibrium state where there is
neither mean water flux, v = 0, nor mean sediment flux, q = 0. On using the former
condition the latter reads

q0
w + q0

g − (c0
1 − c0

2)m
0 = 0. (B 5)
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Notice that in equilibrium, even though the total current vanishes, v = 0, the current
below troughs, U , is not zero due to the undertow. Let us now examine the perturbed
state where alongshore non-uniformity develops and v 6= 0, q 6= 0. Subtraction of
(B 5) from (B 2), and taking account of (B 4) yields

q = c1D̄v + q′w + q′g − (c′1 − c′2)m− (c0
1 − c0

2)m
′, (B 6)

where the primes mean perturbed quantities, that is, c′1 = c1 − c0
1, m

′ = m − m0 and
so on. Then, our second assumption is that the perturbations in the wave-driven
sediment transport and in the transport due to the water flux above troughs are
negligible compared to the sediment transport due to the total current:

|q′w|, |(c0
1 − c0

2)m
′|, |(c′1 − c′2)m| � |c1D̄v|. (B 7)

Finally we adopt the common expression (Bailard 1981)

qg = −γ∇zb
for the gravity-driven transport, where γ depends on the wave orbital velocity. With
all these assumptions, our sediment transport equation can be finally written as

q = αv − γ∇z′b, (B 8)

where z′b = zb − z0
b and α = c1D̄.

Let us check the order of magnitude of the quantities involved in inequality (B 7).
We will refer to a typical situation with

D̄ ∼ 2 m, H ∼ 1 m, v ∼ 0.5 m s−1, u0 ∼ 1 m s−1, c1 ∼ 0.001, (B 9)

in which the order of magnitude of the current-driven sediment transport will be
|c1D̄v| ∼ 10−3 m2 s−1. We will assume moderate-amplitude topographic perturbations
not larger that about 10% the mean water depth, D̄.

An estimate of the wave-driven sediment transport qw can be made by considering
the alongshore-uniform equilibrium. In this case, qw is balanced by the transport
driven by gravity and undertow. The three contributions are thus of the same order
of magnitude (see Plant et al. 2000) so that an evaluation of qg provides a reasonable
estimate of the magnitude of qw . We can compute the coefficient γ in qg by means
of the Bailard (1981) parameterization. By adapting equation (11) in that paper to
volume of sediment instead of weight we obtain

γ =
cd

gs

εb

(tanφc)2
+

(
εs

ws

)2

u2
0u

3
0, (B 10)

where εb ' 0.1, εs ' 0.02, cd ∼ 0.01, tanφc ' 1. The relative density of the sediment
is s ' 2.6 and we can consider, for instance, a fall celerity of the grains ws ∼
0.05 m s−1. With all these figures, we obtain γ ∼ 2× 10−4 m2 s−1. To obtain an upper
bound we can assume a very steep slope of |∇zb| ∼ 0.1 and we finally arrive at
|qw| ∼ |qg| ∼ 2× 10−5 m2 s−1. This estimate is not in disagreement with experimental

data reported by Peters, Newe & Oumeraci (2001) who found |qw| ∼ 10−4 m2 s−1

for storm conditions (much stronger than the ‘typical’ situation considered here).
It is reasonable to assume that the perturbation of this wave-driven transport for
moderate-amplitude topographic perturbations is not larger than qw itself. Thus, q′w is
expected to be at most one or two orders of magnitude smaller than the current-driven
transport.
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The water volume flux driven by the waves can be computed as

|m| = E

ρc
∼ 1

8

√
g

D̄
H2, (B 11)

which gives m = |m| ∼ 0.3 m2 s−1. If we assume that the perturbations in c1, c2 are not
larger than 10% of c1 itself, it immediately follows that |(c′1− c′2)m| is not larger than
0.3× 10−4 m2 s−1.

If we insert the saturated surf zone hypothesis, H = γbD̄, into (B 11) we find the
relationship m′/m = 1.5D̄′/D̄ between the relative variations. From this,

m′ ∼ 1.5× 0.1× 0.3 m2 s−1 ∼ 0.05 m2 s−1

and, since c0
1 ∼ 0.001, it is found that |(c0

1 − c0
2)m

′| ∼ 0.5× 10−4 m2 s−1. Therefore, it is
sensible to neglect the three terms on the left in (B 7) with respect to the current-driven
sediment transport.
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